
This component allows you to use a multitude of local variables as inputs for Animators, Variable
Buffers, Avatar Parameters, and Spawnable parameters.

As of writing, this component is only officially supported on Avatars to set Avatar Parameters, but
does function as intended on Spawnables and in Worlds.

The script will update entries every 0.05s for performance reasons, so depending on your usecase
you may notice values are choppy and need smoothing via Animator shinanigans.

The string of the parameter you want to apply the value to.

Depending on the selected TargetType, this GameObject is used to get the Animator or Variable
Buffer components to set the outputted value to.

The local variable used to drive the selected Animator Parameter.

TimeSeconds
DateTime.Now returned as Float.

TimeSecondsUtc
DateTime.UtcNow returned as Float.

DeviceMode
If in VR returns 1, otherwise returns 0.

CVR Parameter Stream

This script is underdeveloped in its current state and likely will need a full rework in the
future. It is incredibly powerful and functions, but note that some aspects of this script are
easily abusable or not fully thought out.

Note on Update Rate

Parameter Name

Target

Type

Some Type entries are not fully developed, non-functional, or poorly implemented.



HeadsetOnHead
If in VR & Headset is on head returns 1, otherwise returns 0.
This does not function at the time of writing.

ZoomFactor
Returns the current Desktop Camera Zoom value between 0 and 1.
This value should be direct 0-1 based on if not zoomed or fully zoomed.

ZoomFactorCurve
Returns the current Desktop Camera Zoom Curve value between 0 and 1.
This value should be smoother than the above type when zooming.

EyeMovementLeftX
Returns eyeAngle.x from CVREyeController.
This is currently bugged & poorly implemented.

EyeMovementLeftY
Returns eyeAngle.x from CVREyeController.
This is currently bugged & poorly implemented.

EyeMovementRightX
Returns eyeAngle.x from CVREyeController.
This is currently bugged & poorly implemented.

EyeMovementRightY
Returns eyeAngle.x from CVREyeController.
This is currently bugged & poorly implemented.

EyeBlinkingLeft
Returns blinkProgress from CVREyeController.
This returns the total blinking progress and is not independent of the other
eye.

EyeBlinkingRight
Returns blinkProgress from CVREyeController.
This returns the total blinking progress and is not independent of the other
eye.

VisemeLevel
Returns visemeLoudness from CVRVisemeController.
VisemeLevel is constantly adjusting to your volume level. Consistent voice
volume will be pretty accurate, with visemeLoudness being scaled to your average
maximum volume. Sudden loud noises will cause VisemeLevel to become less
sensitive until it readjusts to your average volume.

TimeSinceHeadsetRemoved
Returns the amount of time you've had your headset off for.
This does not function at the time of writing.

TimeSinceLocalAvatarLoaded
Returns the time since you've last switched into an avatar.

LocalWorldDownloadPercentage
Returns the current normalized download percentage while loading a World.
Note that once the world has finished downloading & started loading the
value will return to 0.

LocalFPS
Returns your current FPS as a float.



LocalPing
Returns your current Ping as a float.

LocalPlayerCount
Returns the current Player Count in the World as a float.
Can never hit 0 as it always adds 1 to account for the local player.

LocalTimeSinceFirstWorldJoin
Time since you've loaded into your Home World after launching the game.
Can be used to read how long you've been in-game.

LocalTimeSinceWorldJoin
Time since you've loaded into any World.
Can be used to read how long you've been in a World.

LocalPlayerMuted
Returns 1 if Muted, 0 if Unmuted.

LocalPlayerHudEnabled
Returns 1 if Hud is enabled, and 0 if disabled.

LocalPlayerNameplatesEnabled
Returns 1 if Nameplates are enabled, and 0 if disabled.
Will still return 1 if Nameplates are set to Menu Only.

LocalPlayerHeight
Returns the Player Height setting in General Settings as a float.
This value doesn't return exact Player Height. Internally this returns (
(int)PlayerHeight / 100f / 1.084f ).
You will likely need to play around with this value to tune it for your usecase.

LocalPlayerControllerType
Not implemented.

LocalPlayerFullBodyEnabled
Returns 1 if FBT, 0 if otherwise.
This returns 1 if Full Body Tracking is AVAILABLE, not CALIBRATED.

TriggerLeftValue
Returns the Left Trigger value between 0 and 1.

TriggerRightValue
Returns the Right Trigger value between 0 and 1.

GripLeftValue
Returns the Left Grip value between 0 and 1.

GripRightValue
Returns the Right Grip value between 0 and 1.

GrippedObjectLeft
Not implemented.

GrippedObjectRight
Not implemented.

TransformGlobalPositionX
Not implemented.

TransformGlobalPositionY
Not implemented.

TransformGlobalPositionZ
Not implemented.



TransformGlobalRotationX
Not implemented.

TransformGlobalRotationY
Not implemented.

TransformGlobalRotationZ
Not implemented.

TransformLocalPositionX
Not implemented.

TransformLocalPositionY
Not implemented.

TransformLocalPositionZ
Not implemented.

TransformLocalRotationX
Not implemented.

TransformLocalRotationY
Not implemented.

The target you want to use the output for.

Animator
Uses Target GameObject property to get Animator component.
Output will always be a Float.

Variable Buffer
Uses Target GameObject property to get Variable Buffer component. 
Output will always be a Float.

Avatar Animator
Sets parameters onto the Local Player Avatar.
Output will be cast from Float to the correct Parameter Type.
Anything above 0.5f will return true if casting to Bool or Trigger.

Custom Float
Sets parameters onto the found Spawnable component. 
Output will always be a Float.

TargetType

Avatar Animator is currently the only supported & selectable TargetType as defined in
CCK3.4, but internally CVRParameterStream supports these other TargetTypes and are
currently functional in-game.

CVRParameterStream runs locally for every player, so keep in mind Network Sync when
utilizing on Spawnables via the Custom Float TargetType. It may be best to use the Animator
TargetType instead to avoid the Spawnable's ownership constantly changing as every client
attempts to sync parameters to the parent Spawnable.



A float value used to adjust values based on the selected Application Type.

Allows you to choose from a list of preset arithmetic to adjust the returned values.
For explanation sake, we will define a few variables:

StaticValue = the Static Value Float set above.
CurrentValue = the current Avatar Animator parameter value as a Float.
(This is always 0 for all other TargetTypes.)
ReturnedValue = the returned value from the above Type entry.
FinalValue = the final value after the Application Type arithmetic.

Override
Sets returned value directly with no adjustment.
FinalValue = ReturnedValue;

AddToCurrent
Adds returned value to current animator value.
FinalValue = CurrentValue + ReturnedValue;

AddToStatic
Adds static value to returned value.
FinalValue = StaticValue + ReturnedValue;

SubtractFromCurrent
Subtracts returned value from current animator value. 
FinalValue = ReturnedValue - CurrentValue;

SubtractFromStatic
Subtracts returned value from static value.
FinalValue = StaticValue - ReturnedValue;

SubtractWithCurrent
Subtracts returned value from current animator value. 
FinalValue = CurrentValue - ReturnedValue;

SubtractWithStatic
Subtracts static value from returned value.
FinalValue = ReturnedValue - StaticValue;

MultiplyWithCurrent
Multiplies the returned value with current value.
FinalValue = ReturnedValue * CurrentValue;

MultiplyWithStatic
Multiplies returned value with static value. 

Nothing prevents you from using Avatar Animator TargetType on Spawnables or Worlds, but
the game will now refuse to set parameters if the target CVRAvatar is not your local
CVRAvatar component. (this was abusable for a period of time)

Static Value

Application Type



FinalValue = ReturnedValue * StaticValue;
CompareLessThen

Returns 1 if returned value is less than static value, 0 if otherwise.
FinalValue = ((ReturnedValue < StaticValue) ? 1f : 0f);

CompareLessThenEquals
Returns 1 if returned value is less than or equal to static value, 0 if otherwise.
FinalValue = ((ReturnedValue <= StaticValue) ? 1f : 0f);

CompareEquals
Returns 1 if returned value is equal with static value, 0 if otherwise. 
FinalValue = ((ReturnedValue == StaticValue) ? 1f : 0f);

CompareMoreThenEquals
Returns 1 if returned value is more than or equal to static value, 0 if otherwise.
FinalValue = ((ReturnedValue >= StaticValue) ? 1f : 0f);

CompareMoreThen
Returns 1 if returned value is more than static value, 0 if otherwise.
FinalValue = ((ReturnedValue > StaticValue) ? 1f : 0f);

Mod
FinalValue = ReturnedValue % Mathf.Max(Mathf.Abs(StaticValue),
0.0001f);

Pow
FinalValue = Mathf.Pow(ReturnedValue , StaticValue);

Revision #5
Created 5 December 2022 01:07:48 by NotAKidoS
Updated 23 December 2022 07:09:15 by NotAKidoS


