
Unofficial documentation about the Content Creation Kit (CCK). As of writing, current
documentation is about CCK 3.4.

Whitelisted Components for Avatars
Components

CVR Asset Info
CVR Avatar
CVR World
CVR Spawnable
CVR Distance Constraint
CVR Pickup Object
CVR Pointer
CVR Advanced Avatar Settings Pointer
CVR Toggle State Pointer
CVR Parameter Stream

Combat System

Combat System
Game Instance Controller
Score Board
Control Point
Damage
Gun Controller
Object Health

Content Creation Kit

List of whitelisted components for use on avatars. Includes relevant documentation links.

Components included within the Content Creation Kit.

CVR Asset Info
CVR Avatar
CVR Pointer
CVR Advanced Avatar Trigger
CVR Toggle State Trigger
CVR Haptic Chest Area
CVR Parameter Stream

Animator
Rigidbody
Fixed Joint
Hinge Joint
Spring Joint
Configurable Joint
Cloth
Capsule Collider
Sphere Collider
Box Collider
Line Renderer
Trail Renderer
Mesh Filter
Mesh Renderer

Whitelisted Components for
Avatars

CVR Components

Unity Components

https://chillout.wiki/books/content-creation-kit/page/cvr-asset-info
https://chillout.wiki/books/content-creation-kit/page/cvr-avatar
https://chillout.wiki/books/content-creation-kit/page/cvr-pointer
https://chillout.wiki/books/content-creation-kit/page/cvr-advanced-avatar-settings-pointer
https://chillout.wiki/books/content-creation-kit/page/cvr-parameter-stream
https://docs.unity3d.com/Manual/class-Animator.html
https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity3d.com/Manual/class-FixedJoint.html
https://docs.unity3d.com/Manual/class-HingeJoint.html
https://docs.unity3d.com/Manual/class-SpringJoint.html
https://docs.unity3d.com/Manual/class-ConfigurableJoint.html
https://docs.unity3d.com/Manual/class-Cloth.html
https://docs.unity3d.com/Manual/class-CapsuleCollider.html
https://docs.unity3d.com/Manual/class-SphereCollider.html
https://docs.unity3d.com/Manual/class-BoxCollider.html
https://docs.unity3d.com/Manual/class-LineRenderer.html
https://docs.unity3d.com/Manual/class-TrailRenderer.html
https://docs.unity3d.com/Manual/class-MeshFilter.html
https://docs.unity3d.com/Manual/class-MeshRenderer.html

Skinned Mesh Renderer
Light Probe Proxy Volume
Aim Constraint
Parent Constraint
Position Constraint
Rotation Constraint
Scale Constraint
Look At Constraint
Particle System
Particle System Force Field

CCD IK
Limb IK
Biped IK
Grounder IK
Full Body Biped IK
Grounder Biped IK
Rotation Limit Angle
Rotation Limit Hinge
Rotation Limit Polygonal
Rotation Limit Spline
Rotation Limit Utilities

Dynamic Bone: Adds a dynamic bone to the component.
Dynamic Bone Collider: Adds an collider that collides/interacts with dynamic bones.
Dynamic Bone Collider Base: Base class for dynamic bone colliders
Dynamic Bone Plane Collider: Adds an collider plane that collides with dynamic bones.

FinalIK

FinalIK is a third party asset available in the Unity Asset Store.

Dynamic Bone

Dynamic Bone is a third party asset available in the Unity Asset Store.

https://docs.unity3d.com/Manual/class-SkinnedMeshRenderer.html
https://docs.unity3d.com/Manual/class-LightProbeProxyVolume.html
https://docs.unity3d.com/Manual/class-AimConstraint.html
https://docs.unity3d.com/Manual/class-ParentConstraint.html
https://docs.unity3d.com/Manual/class-PositionConstraint.html
https://docs.unity3d.com/Manual/class-RotationConstraint.html
https://docs.unity3d.com/Manual/class-ScaleConstraint.html
https://docs.unity3d.com/Manual/class-LookAtConstraint.html
https://docs.unity3d.com/Manual/class-ParticleSystem.html
https://docs.unity3d.com/Manual/class-ParticleSystemForceField.html
http://www.root-motion.com/finalikdox/html/page5.html
http://www.root-motion.com/finalikdox/html/page12.html
http://www.root-motion.com/finalikdox/html/page4.html
http://www.root-motion.com/finalikdox/html/page9.html
http://www.root-motion.com/finalikdox/html/page8.html
http://www.root-motion.com/finalikdox/html/page9.html
http://www.root-motion.com/finalikdox/html/page14.html
http://www.root-motion.com/finalikdox/html/page14.html
http://www.root-motion.com/finalikdox/html/page14.html
http://www.root-motion.com/finalikdox/html/page14.html
http://www.root-motion.com/finalikdox/html/page14.html
https://assetstore.unity.com/packages/tools/animation/final-ik-14290
https://assetstore.unity.com/packages/tools/animation/dynamic-bone-16743

Magica Bone Cloth
Magica Bone Spring
Magica Mesh Cloth
Magica Mesh Spring
Magica Render Deformer
Magica Virtual Deformer
Magica Plane Collider
Magica Sphere Collider
Magica Capsule Collider

Magica Cloth

Magica Cloth is a third party asset available in the Unity Asset Store.

https://magicasoft.jp/en/magica-cloth-bone-cloth-2/
https://magicasoft.jp/en/magica-cloth-bone-spring-2/
https://magicasoft.jp/en/magica-cloth-mesh-cloth-2/
https://magicasoft.jp/en/magica-cloth-mesh-spring-2/
https://magicasoft.jp/en/magica-cloth-render-deformer-2/
https://magicasoft.jp/en/magica-cloth-virtual-deformer-2/
https://magicasoft.jp/en/magica-cloth-plane-collider-2/
https://magicasoft.jp/en/magica-cloth-sphere-collider-2/
https://magicasoft.jp/en/magica-cloth-capsule-collider-2/
https://assetstore.unity.com/packages/tools/physics/magica-cloth-160144

Components

Components

Required component that is automatically added alongside CVR Avatar / CVR World / CVR
Spawnable.

This field is used to identify your content when uploading. You can attach an existing Guid
belonging to your account for updating existing content, or leave it empty to automatically
generate a new Guid on upload.

CVR Asset Info

"Request failed. The provided content ID does not belong to your account."
You may run into this error if you've manually added the CVR Asset Info component to your
asset!

Remove both the CVR Asset Info script and your CVR Avatar / CVR World / CVR Spawnable
component.
Then readd only the CVR Avatar / CVR World / CVR Spawnable component and try again.

Unique Identifier

https://chillout.wiki/books/content-creation-kit/page/cvr-avatar

Components

The main component for a ChilloutVR avatar. This is required for an avatar upload.

Some options listed below may be missing for generic (non-humanoid) avatars.

Property Description

View Position �� Controls your avatars viewpoint in-game. This should be
between both eyes.

Voice Position �� Controls your avatars voice position in-game. This should
be on your avatars mouth.

Voice Parent

The humanoid bone which your Voice Position is attached
to. It will follow the bone's position while you move your
avatar around in world space. Head, Left Hand, Right
Hand, Hips.

The Override Controller used to specify which Controller and Overrides to use on the avatar.

You can use this to quickly override animations on the default Controller included with the CCK, or
alternatively reference your own custom Controller to use on the avatar instead.

You can configure your avatar to have eye movement, blinking and voice activated blendshapes
called visemes.

CVR Avatar

This component will automatically add the required CVR Asset Info component for you.
You may run into issues uploading if you've manually added the CVR Asset Info script before
the CVR Avatar component!

Generic Avatar Settings

Avatar Customization

Animation Overrides

Blinking and Visemes

https://chillout.wiki/books/content-creation-kit/page/cvr-asset-info

The Skinned Mesh Renderer to use for automatic blinking and visemes.

Enables automatic eye movement that can focus on nearby players.

Enables automatic blinking using the specified blendshapes. You are able to specify up to four
blendshapes to use at once.
Any unneeded blendshapes can be left as -none- .

Enables lip sync to be used on your avatar. You can choose between using Visemes, Single
Blendshape, and Jaw Bone.

Visemes
Uses multiple blendshapes to map human speech to mouth movement.
You can find examples and references from the Oculus Developer Viseme Reference
Documentation.

Single Blendshape
Uses a single blendshape to drive mouth movement.

Jaw bone
Uses the mapped jaw bone in your avatars Humanoid configuration to drive mouth
movement.

Face Mesh

Use Eye Movement

This requires eye bones to be mapped in your avatars Humanoid configuration!

This property is animatable during runtime.

Use Blink Blendshapes

This property is animatable during runtime.

Use Lip Sync

This property is animatable during runtime. It must be enabled by default when using the
Visemes Lip Sync Mode.

Lip Sync Mode

Viseme Smoothing

https://developer.oculus.com/documentation/unity/audio-ovrlipsync-viseme-reference/
https://developer.oculus.com/documentation/unity/audio-ovrlipsync-viseme-reference/

A value between 1-100 to determine the smoothing of the Visemes Lip Sync Mode.
Lower values will snap to the currently recognized Viseme, and higher values will slowly smooth to
it.

With the advanced tagging feature, you can set content filter tags for specific gameobjects on your
avatar.
Press the + button to add an entry to your Tagged Gameobjects list.

List of content tags you want for this particular gameobject. You can tag Loud Audio, Long Range
Audio, Screen Fx, Flashing Colors, Flashing Lights, Violence, Gore, and Horror.

The specific gameobject you would like to add the above tags to.

A fallback gameobject to use instead if the above gameobject is hidden by the content filter.

Advanced Tagging

Tags

GameObject

Fallback GO (GameObject)

If you are using the Advanced Tagging System, you still need to Tag your Avatar
appropriately on the upload screen!

Advanced Settings

Components

The main component for a ChilloutVR world. This is required for a world upload.

CVR World

Components

The main component for a ChilloutVR prop. This is required for a prop upload.

CVR Spawnable

Components

This component acts like a tether, keeping an object within a certain distance of a reference object.

This is the transform of the reference object. It serves as an anchor point for the tether.

This is the minimum distance, in meters, to keep from the reference object. Defaults to zero (0).

This is the maximum distance, in meters, to keep from the reference object. Defaults to zero (0).

This is the current distance from the reference object.

CVR Distance Constraint

Target

Min Distance

Max Distance

Current Distance

Components

This script allows an object to be picked up by a user.

This controls how a user will hold the object

This mode specifies that the object can be grabbed anywhere, and will be held wherever the user
grabs it.

This mode specifies that the object should be held in a specific orientation relative to the user's
hand.

This is the transform that is used to indicate where the object should be held. A gizmo will show a
left-handed grip, around the transform.

Checking this box disallows other users from taking this item while it is currently being held.

This is the maximum distance the user can be from the object and still interact with it. The setting
defaults to 0, but 2-3 is usually a good starting point.

CVR Pickup Object

Grip Type

Free

Origin

Grip Origin

The grip transform is arranged Z+ (blue arrow) forward and Y+ (green arrow) up.

If you require a separate origin for Desktop players, create a child GameObject on your Grip
Origin, and name it [Desktop] . This transform uses Y+ (green arrow) forward, and Z+ (blue
arrow) down.

Disallow Theft

Maximum Grab Distance

(This section requires more research.)

This allows the object to stay in the hand indefinitely without requiring the user to actively hold
onto it.

(This section requires more research.)

Snapping References

Auto Hold

Desktop users can press G in order to release the held object.

VR users can hold Grip and down on the joystick to release the held object.

IK Reference

Components

A component used to physically interact with the many different variations of triggers.

As the name suggests, this component marks a point that will activate triggers once they've come
into contact.

The string used to identify the pointer. Allows a trigger to specify what types of pointers should
interact.

There are different types of triggers that a pointer can interact with:

CVR Advanced Avatar Trigger
CVR Toggle State Trigger

CVR Interactable

CVR Interactable
CVR Spawnable Trigger

CVR Pointer

Type

CVR Pointer will check for any existing colliders before adding its own Sphere Collider during
runtime.
This allows you to change the pointer size or shape by adding your own Collider(s) with
IsTrigger checked.

Trigger Types

Avatar

World

Spawnable

Components

CVR Advanced Avatar
Settings Pointer

This component should be considered depricated. You can use CVR Pointer instead.

CVR Advanced Avatar Settings Pointer inherits from CVR Pointer internally, and as such will
act the same.

https://chillout.wiki/books/content-creation-kit/page/cvr-pointer

Components

CVR Toggle State Pointer
This component should be considered depricated. You can use CVR Pointer instead.

CVR Toggle State Pointer inherits from CVR Pointer internally, and as such will act the same.

https://chillout.wiki/books/content-creation-kit/page/cvr-pointer

Components

This component allows you to use a multitude of local variables as inputs for Animators, Variable
Buffers, Avatar Parameters, and Spawnable parameters.

As of writing, this component is only officially supported on Avatars to set Avatar Parameters, but
does function as intended on Spawnables and in Worlds.

The script will update entries every 0.05s for performance reasons, so depending on your usecase
you may notice values are choppy and need smoothing via Animator shinanigans.

The string of the parameter you want to apply the value to.

Depending on the selected TargetType, this GameObject is used to get the Animator or Variable
Buffer components to set the outputted value to.

The local variable used to drive the selected Animator Parameter.

TimeSeconds
DateTime.Now returned as Float.

TimeSecondsUtc
DateTime.UtcNow returned as Float.

CVR Parameter Stream

This script is underdeveloped in its current state and likely will need a full rework in the
future. It is incredibly powerful and functions, but note that some aspects of this script are
easily abusable or not fully thought out.

Note on Update Rate

Parameter Name

Target

Type

Some Type entries are not fully developed, non-functional, or poorly implemented.

DeviceMode
If in VR returns 1, otherwise returns 0.

HeadsetOnHead
If in VR & Headset is on head returns 1, otherwise returns 0.
This does not function at the time of writing.

ZoomFactor
Returns the current Desktop Camera Zoom value between 0 and 1.
This value should be direct 0-1 based on if not zoomed or fully zoomed.

ZoomFactorCurve
Returns the current Desktop Camera Zoom Curve value between 0 and 1.
This value should be smoother than the above type when zooming.

EyeMovementLeftX
Returns eyeAngle.x from CVREyeController.
This is currently bugged & poorly implemented.

EyeMovementLeftY
Returns eyeAngle.x from CVREyeController.
This is currently bugged & poorly implemented.

EyeMovementRightX
Returns eyeAngle.x from CVREyeController.
This is currently bugged & poorly implemented.

EyeMovementRightY
Returns eyeAngle.x from CVREyeController.
This is currently bugged & poorly implemented.

EyeBlinkingLeft
Returns blinkProgress from CVREyeController.
This returns the total blinking progress and is not independent of the other
eye.

EyeBlinkingRight
Returns blinkProgress from CVREyeController.
This returns the total blinking progress and is not independent of the other
eye.

VisemeLevel
Returns visemeLoudness from CVRVisemeController.
VisemeLevel is constantly adjusting to your volume level. Consistent voice
volume will be pretty accurate, with visemeLoudness being scaled to your average
maximum volume. Sudden loud noises will cause VisemeLevel to become less
sensitive until it readjusts to your average volume.

TimeSinceHeadsetRemoved
Returns the amount of time you've had your headset off for.
This does not function at the time of writing.

TimeSinceLocalAvatarLoaded
Returns the time since you've last switched into an avatar.

LocalWorldDownloadPercentage
Returns the current normalized download percentage while loading a World.
Note that once the world has finished downloading & started loading the

value will return to 0.
LocalFPS

Returns your current FPS as a float.
LocalPing

Returns your current Ping as a float.
LocalPlayerCount

Returns the current Player Count in the World as a float.
Can never hit 0 as it always adds 1 to account for the local player.

LocalTimeSinceFirstWorldJoin
Time since you've loaded into your Home World after launching the game.
Can be used to read how long you've been in-game.

LocalTimeSinceWorldJoin
Time since you've loaded into any World.
Can be used to read how long you've been in a World.

LocalPlayerMuted
Returns 1 if Muted, 0 if Unmuted.

LocalPlayerHudEnabled
Returns 1 if Hud is enabled, and 0 if disabled.

LocalPlayerNameplatesEnabled
Returns 1 if Nameplates are enabled, and 0 if disabled.
Will still return 1 if Nameplates are set to Menu Only.

LocalPlayerHeight
Returns the Player Height setting in General Settings as a float.
This value doesn't return exact Player Height. Internally this returns (
(int)PlayerHeight / 100f / 1.084f).
You will likely need to play around with this value to tune it for your usecase.

LocalPlayerControllerType
Not implemented.

LocalPlayerFullBodyEnabled
Returns 1 if FBT, 0 if otherwise.
This returns 1 if Full Body Tracking is AVAILABLE, not CALIBRATED.

TriggerLeftValue
Returns the Left Trigger value between 0 and 1.

TriggerRightValue
Returns the Right Trigger value between 0 and 1.

GripLeftValue
Returns the Left Grip value between 0 and 1.

GripRightValue
Returns the Right Grip value between 0 and 1.

GrippedObjectLeft
Not implemented.

GrippedObjectRight
Not implemented.

TransformGlobalPositionX
Not implemented.

TransformGlobalPositionY
Not implemented.

TransformGlobalPositionZ
Not implemented.

TransformGlobalRotationX
Not implemented.

TransformGlobalRotationY
Not implemented.

TransformGlobalRotationZ
Not implemented.

TransformLocalPositionX
Not implemented.

TransformLocalPositionY
Not implemented.

TransformLocalPositionZ
Not implemented.

TransformLocalRotationX
Not implemented.

TransformLocalRotationY
Not implemented.

The target you want to use the output for.

Animator
Uses Target GameObject property to get Animator component.
Output will always be a Float.

Variable Buffer
Uses Target GameObject property to get Variable Buffer component.
Output will always be a Float.

Avatar Animator
Sets parameters onto the Local Player Avatar.
Output will be cast from Float to the correct Parameter Type.
Anything above 0.5f will return true if casting to Bool or Trigger.

Custom Float
Sets parameters onto the found Spawnable component.
Output will always be a Float.

TargetType

Avatar Animator is currently the only supported & selectable TargetType as defined in
CCK3.4, but internally CVRParameterStream supports these other TargetTypes and are
currently functional in-game.

A float value used to adjust values based on the selected Application Type.

Allows you to choose from a list of preset arithmetic to adjust the returned values.
For explanation sake, we will define a few variables:

StaticValue = the Static Value Float set above.
CurrentValue = the current Avatar Animator parameter value as a Float.
(This is always 0 for all other TargetTypes.)
ReturnedValue = the returned value from the above Type entry.
FinalValue = the final value after the Application Type arithmetic.

Override
Sets returned value directly with no adjustment.
FinalValue = ReturnedValue;

AddToCurrent
Adds returned value to current animator value.
FinalValue = CurrentValue + ReturnedValue;

AddToStatic
Adds static value to returned value.
FinalValue = StaticValue + ReturnedValue;

SubtractFromCurrent
Subtracts returned value from current animator value.
FinalValue = ReturnedValue - CurrentValue;

SubtractFromStatic
Subtracts returned value from static value.
FinalValue = StaticValue - ReturnedValue;

SubtractWithCurrent
Subtracts returned value from current animator value.
FinalValue = CurrentValue - ReturnedValue;

SubtractWithStatic
Subtracts static value from returned value.

CVRParameterStream runs locally for every player, so keep in mind Network Sync when
utilizing on Spawnables via the Custom Float TargetType. It may be best to use the Animator
TargetType instead to avoid the Spawnable's ownership constantly changing as every client
attempts to sync parameters to the parent Spawnable.

Nothing prevents you from using Avatar Animator TargetType on Spawnables or Worlds, but
the game will now refuse to set parameters if the target CVRAvatar is not your local
CVRAvatar component. (this was abusable for a period of time)

Static Value

Application Type

FinalValue = ReturnedValue - StaticValue;
MultiplyWithCurrent

Multiplies the returned value with current value.
FinalValue = ReturnedValue * CurrentValue;

MultiplyWithStatic
Multiplies returned value with static value.
FinalValue = ReturnedValue * StaticValue;

CompareLessThen
Returns 1 if returned value is less than static value, 0 if otherwise.
FinalValue = ((ReturnedValue < StaticValue) ? 1f : 0f);

CompareLessThenEquals
Returns 1 if returned value is less than or equal to static value, 0 if otherwise.
FinalValue = ((ReturnedValue <= StaticValue) ? 1f : 0f);

CompareEquals
Returns 1 if returned value is equal with static value, 0 if otherwise.
FinalValue = ((ReturnedValue == StaticValue) ? 1f : 0f);

CompareMoreThenEquals
Returns 1 if returned value is more than or equal to static value, 0 if otherwise.
FinalValue = ((ReturnedValue >= StaticValue) ? 1f : 0f);

CompareMoreThen
Returns 1 if returned value is more than static value, 0 if otherwise.
FinalValue = ((ReturnedValue > StaticValue) ? 1f : 0f);

Mod
FinalValue = ReturnedValue % Mathf.Max(Mathf.Abs(StaticValue),
0.0001f);

Pow
FinalValue = Mathf.Pow(ReturnedValue , StaticValue);

Combat System

Combat System

Combat System

Combat System

Game Instance Controller

Combat System

Score Board

Combat System

Control Point

Combat System

Damage

Combat System

Gun Controller

Combat System

Object Health

